CPS & CPR - Perforated Diffusers ### Models: CPS & CPR The Holyoake Series CPS and CPR perforated supply and return diffusers are designed for heating, cooling and ventilating, ceiling applications. The Series CPS comprises of a perforated face plate mounted in a removable core frame, which blends suitably into many ceiling types. Concealed, adjustable pattern controllers on the rear, provide efficient airflow distribution and can be easily adjusted, by simply removing the fascia, unlocking and repositioning. Then any desired distribution pattern can be obtained, without any change in airflow, or noise levels. This simplifies ordering procedures and eliminates the need to rebalance the system. Series CPR are identical, without patterns. Minimal ceiling plenum height is required, (dependant on connecting spigot style); which is available with a varied choice of round, or square inlet sizes, see table below. #### Construction Extruded aluminium frames. Aluminium perforated face and galvanised adaptor pan. ### Installation The CPS plenum adaptor is independently supported, built in to the ceiling and then connected and sealed to the ductwork. The Removable core system allows the preset pattern controllers to be suitably positioned and then the perforated face is simply pushed into the installed frame and clipped into place. ### **Features** - Aesthetically pleasing design. - Fully adjustable concealed pattern controllers. - Infinite range of distribution patterns. - Compact assembly height and Removable Core frame. - Plaster ceiling and 'T' Rail installation options. - Circular, or square inlets in a range of sizes. | A Nominal Diffuser Size C* Overall Plenum Adaptor Size | | 250 x 250 | 350 x 350 | 450 x 450 | 550 x 550 | 250 x 550 | 550 x 850 | 250 x 850 | 250 x 1150 | 550 x 1150 | |---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------| | | | 300 x 300 | 400 x 400 | 500 x 500 | 600 x 600 | 300 x 600 | 600 x 900 | 300 x 900 | 300 x 1200 | 600 x 1200 | | | 150 x 150 | • | • | • | • | • | • | • | • | • | | Nominal | 200 x 200 | | • | • | • | | • | | | • | | Neck Size | 250 x 250 | | | • | • | | • | | | • | | D* | 300 x 300 | | | | • | | • | | | • | | | 150 x 450 | | | | | • | | • | • | | | Nominal | 125 DIA | • | • | • | • | • | • | • | • | • | | Nominal
Neck | 150 DIA | • | • | • | • | • | • | • | • | • | | Diameter | 175 DIA | • | • | • | • | • | • | • | • | • | | E* | 200 DIA | | • | • | • | | • | | | • | | | 250 DIA | | • | • | • | | • | | | • | | CPS & | 300 DIA | | | • | • | | • | | | • | | CPR with | 350 DIA | | | • | • | | • | | | • | | Adaptor | 400 DIA | | | | • | | • | | | • | Ceiling Module and Duct Sizes* Indicates available combination ### Note - $1. For other frame styles and module sizes and for the performance of sizes \\ not shown in the capacity tables, contact your local Holyoake branch.$ - 2. Seismic restraints are required, but not supplied. ### Options Heavy gauge galvanised perforated face, available against special order. OBD-2 — Opposed blade damper. ### **Finish** Standard Finish is Holyoake White, or can be powder coated to specific requirements. ## Perforated Diffusers – CPS & CPR ## Air Pattern Controller Adjustment Notes - 1. Extract the Removeable Core from the CPS diffuser. - 2. The pattern controls are mounted on the rear of the Removable Core and are now visible. Loosen stud tubing and rotate the air pattern controller to the desired flow direction. Tighten the stud tubing on the controller. - 3. Replace the Removable Core assembly. ### Versatile Air Distribution for most Applications Throw values for above pattern will be 0.6 times the values shown in the peformance tables. ### Performance Notes - 1. Refer to Performance Data Tables on the following pages. - 2. CPR Return Data is shown in Dark Blue shaded area at the bottom of each table - 3. Throw values are given for terminal velocities of 0.75 and 0.25 m/s. # CPS & CPR - Performance Data | | | | | | | | | 30 | 0 x 300 | Modul | e Size | |------------------------------|--|--|---|---|---|---|---|--|--|---|--| | Duct Size | Neck Velocity
Vel. Press., | | 1.53
2 | 2.04
3 | 2.55
4 | 3.06
6 | 3.57
8 | 4.08
10 | 5.1
16 | 6.12
23 | 7.14
31 | | | Tot. Press.,
Flow Rate, n
NC | Pa | 3
0.019 | 5
0.026
- | 8
0.033
15 | 11
0.038
20 | 15
0.045
24 | 19
0.052
28 | 30
0.064
34 | 43
0.078
39 | 59
0.090
43 | | 125 mm
RD | Throw, 3-W
m 2-W
1-W | VAY
VAY | 0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8 | 0.6-1.5
0.6-1.8
0.6-1.8
0.6-2.4 | 0.6-1.8
0.6-2.1
0.6-2.4
0.9-2.7 | 0.6-2.1
0.6-2.4
0.9-3.1
1.2-3.1 | 0.9-2.1
0.9-2.7
1.2-3.1
1.5-3.4 | 0.9-2.4
1.2-3.1
1.2-3.7
1.8-4.0 | 1.5-2.7
1.5-3.1
1.8-4.0
1.8-4.0 | 1.8-3.1
1.8-3.7
2.1-4.3
2.4-4.3 | 1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.6 | | | Tot. Press.,
Flow Rate, n
NC | | 4
0.028 | 7
0.038
- | 10
0.047
17 | 15
0.057
22 | 20
0.066
26 | 25
0.076
30 | 40
0.092
36 | 57
0.111
41 | 77
0.130
45 | | 150 mm
RD | Throw, 3-W
m 2-W
1-W | VAY
VAY | 0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8 | 0.6-1.5
0.6-1.8
0.6-2.1
0.9-2.7 | 0.9-2.1
0.9-2.4
0.9-2.7
0.9-3.4 | 0.9-2.4
0.9-2.7
0.9-3.1
1.2-3.4 | 0.9-2.4
0.9-3.1
1.2-3.4
1.5-3.7 | 0.9-2.7
1.2-3.1
1.2-3.7
1.8-4.0 | 1.5-3.1
1.5-3.4
1.8-4.3
2.1-4.6 | 1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.9 | 2.1-3.4
2.1-4.3
2.4-5.2
3.1-5.2 | | | Tot. Press.,
Flow Rate, n
NC | | 6
0.038 | 10
0.050
15 | 15
0.064
21 | 21
0.076
26 | 29
0.090
30 | 37
0.102
34 | 58
0.127
40 | 83
0.151
45 | 113
0.177
49 | | 175 mm
RD | Throw, 4-W
3-W
m 2-W
1-W | VAY
VAY | 0.3-1.5
0.3-1.5
0.3-1.8
0.6-2.4 | 0.6-1.8
0.6-2.1
0.6-2.7
0.9-3.4 | 0.9-2.7
0.9-3.1
0.9-3.4
1.2-3.7 | 0.9-3.1
0.9-3.4
1.2-3.7
1.5-3.4 | 1.2-3.1
1.2-3.7
1.5-4.3
1.8-4.3 | 1.2-3.4
1.5-4.0
1.5-4.6
2.4-4.6 | 1.8-3.7
1.8-4.3
2.1-5.2
2.7-5.2 | 2.4-4.0
2.1-4.9
2.7-5.5
3.4-5.5 | 2.7-4.3
2.7-5.2
3.1-6.1
3.7-6.1 | | | Tot. Press.,
Flow Rate, n
NC | | 5
0.035 | 8
0.047
13 | 13
0.059
19 | 19
0.071
24 | 25
0.083
28 | 33
0.094
32 | 50
0.118
38 | 73
0.142
43 | 99
0.165
47 | | 150 x 150 | 4-W
Throw, 3-W
m 2-W
1-W
Neg Stat. Pres | VAY
VAY
VAY | 0.3-1.5
0.3-1.5
0.3-1.8
0.6-2.1 | 0.6-1.8
0.6-2.1
0.6-2.4
0.9-3.1 | 0.9-2.4
0.9-2.7
0.9-3.1
1.2-3.4 | 0.9-2.7
0.9-3.1
1.2-3.7
1.5-3.7 | 1.2-2.7
1.2-3.4
1.5-4.0
1.8-4.0 | 1.2-3.1
1.5-3.7
1.5-4.3
2.1-4.3 | 1.8-3.7
1.8-4.3
2.1-5.2
2.7-5.2 | 2.1-3.7
2.1-4.6
2.4-5.2
3.1-5.2 | 2.4-4.0
2.4-2.9
2.7-5.8
3.4-5.8 | | 250 x 250 | Flow Rate, n
NC | | 0.099 | 0.132
17 | 0.163
24 | 0.198
30 | 0.229
35 | 0.262
39 | 0.328
46 | 0.392
53 | 0.458
58 | | * perform | ance data for C | PR. | | | | | | 30 | 0 x 600 | Modul | e Size | | Duct Size | Neck Velocity | | 1.53 | 2.04 | 2.55 | 3.06 | 3.57 | 4.08 | 5.1 | 6.12 | 7.14 | | | Vel Press | Pa | 2 | 3 | 4 | 6 | 8 | 10 | 16 | 23 | 31 | | | Vel. Press.,
Tot. Press.,
Flow Rate, n | Pa | 3
0.019 | 3
5
0.226 | 7
0.033 | 6
10
0.038 | 8
14
0.045 | 10
18
0.052 | 16
27
0.064 | 23
39
0.078 | 31
54
0.090 | | 125 mm
RD | Tot. Press.,
Flow Rate, n
NC
4-V
Throw, 3-V | Pa
n³/s
VAY
VAY
VAY | 3 | 5 | 7 | 10 | 14 | 18 | 27 | 39 | 54 | | | Tot. Press., Flow Rate, n NC 4-V Throw, 3-V 2-V 1-W Tot. Press., Flow Rate, n | Pa
n³/s
VAY
VAY
VAY
VAY | 3
0.019
-
0.3-1.2
0.3-1.2
0.3-1.5 | 5
0.226
-
0.6-1.5
0.6-1.8
0.6-1.8 | 7
0.033
14
0.6-1.8
0.6-2.1
0.6-2.4
0.9-2.7
9
0.047 | 10
0.038
19
0.6-2.1
0.6-2.4
0.9-3.1
1.2-3.1
12
0.057 | 14
0.045
23
0.9-2.1
0.9-2.7
1.2-3.1
1.5-3.4
17
0.066 | 18
0.052
27
0.9-2.4
1.2-3.1
1.2-3.7
1.8-4.0
21
0.076 | 27
0.064
33
1.5-2.7
1.5-3.1
1.8-4.0
1.8-4.0
33
0.092 | 39
0.078
38
1.8-3.1
1.8-3.7
2.1-4.3
2.4-4.3
48
0.111 | 54
0.090
42
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.6
65
0.130 | | | Tot. Press., Flow Rate, n NC 4-W Throw, | Pa
n³/s
VAY
VAY
VAY
Pa
n³/s
VAY
VAY
VAY | 3
0.019
-
0.3-1.2
0.3-1.5
0.6-1.8
4
0.028
-
0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8 | 5
0.226
0.6-1.5
0.6-1.8
0.6-2.4
6
0.038
0.6-1.5
0.6-1.5
0.6-1.8
0.6-2.1 | 7
0.033
14
0.6-1.8
0.6-2.1
0.6-2.4
0.9-2.7
9
0.047
17
0.9-2.1
0.9-2.4
0.9-2.7
0.9-2.4 | 10
0.038
19
0.6-2.1
0.6-2.4
0.9-3.1
1.2-3.1
12
0.057
22
0.9-2.4
0.9-2.7
0.9-3.1
1.2-3.4 | 14
0.045
23
0.9-2.1
0.9-2.7
1.2-3.1
1.5-3.4
17
0.066
26
0.9-2.4
0.9-3.1
1.2-3.4
1.5-3.7 | 18
0.052
27
0.9-2.4
1.2-3.1
1.2-3.7
1.8-4.0
21
0.076
30
0.9-2.7
1.2-3.1
1.2-3.7
1.8-4.0 | 27
0.064
33
1.5-2.7
1.5-3.1
1.8-4.0
1.8-4.0
33
0.092
36
1.5-3.1
1.5-3.4
1.8-4.3
2.1-4.6 | 39
0.078
38
1.8-3.1
1.8-3.7
2.1-4.3
2.4-4.3
48
0.111
41
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.9 | 54
0.090
42
1.8-3.1
1.8-4.0
2.1-4.6
65
0.130
45
2.1-3.4
2.1-4.3
2.4-5.2
3.1-5.2 | | RD
150 mm | Tot. Press., Flow Rate, n NC Throw, M 2-W 1-W Tot. Press., Flow Rate, n NC Throw, M 2-W 1-W Tot. Press., Flow Rate, n NC Throw, Throw, Throw, Tot. Press., Flow Rate, n | Pa
n³/s
VAY
VAY
VAY
Pa
n³/s
VAY
VAY
VAY
VAY | 3
0.019
-
0.3-1.2
0.3-1.5
0.6-1.8
4
0.028
-
0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8 | 5
0.226
-
0.6-1.5
0.6-1.8
0.6-2.4
6
0.038
-
0.6-1.5
0.6-1.5
0.6-2.1
0.9-2.7
7
0.050 | 7
0.033
14
0.6-1.8
0.6-2.1
0.6-2.4
0.9-2.7
9
0.047
17
0.9-2.1
0.9-2.1
0.9-2.2
0.9-2.7 | 10
0.038
19
0.6-2.1
0.6-2.4
0.9-3.1
1.2-3.1
12
0.057
22
0.9-2.4
0.9-2.7
0.9-3.1
1.2-3.4 | 14
0.045
23
0.9-2.1
0.9-2.7
1.2-3.1
1.5-3.4
17
0.066
26
0.9-2.4
0.9-3.1
1.2-3.4
1.5-3.7 | 18
0.052
27
0.9-2.4
1.2-3.1
1.2-3.7
1.8-4.0
21
0.076
30
0.9-2.7
1.2-3.1
1.2-3.7
1.8-4.0
25
0.102 | 27
0.064
33
1.5-2.7
1.5-3.1
1.8-4.0
1.8-4.0
33
0.092
36
1.5-3.1
1.5-3.4
1.8-4.3
2.1-4.6 | 39
0.078
38
1.8-3.1
1.8-3.7
2.1-4.3
2.4-4.3
48
0.111
41
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.9 | 54
0.090
42
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.6
65
0.130
45
2.1-3.4
2.1-3.4
2.1-4.3
2.4-5.2
3.1-5.2 | | RD
150 mm | Tot. Press., Flow Rate, n NC 4-V Throw, 3-V 1-W Tot. Press., Flow Rate, n NC Throw, 3-V 1-V Tot. Press., Flow Rate, n NC Tot. Press., Flow Rate, n NC 4-V Throw, 3-V 1-V Throw, 3-V 1-V Throw, 3-V 1-V 1-V 1-V | Pa
n³/s
VAY
VAY
VAY
VAY
VAY
VAY
VAY
VAY
VAY
VAY | 3
0.019
-
0.3-1.2
0.3-1.5
0.6-1.8
4
0.028
-
0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8 | 5
0.226
-
0.6-1.5
0.6-1.8
0.6-2.4
6
0.038
-
0.6-1.5
0.6-1.5
0.6-1.8
0.6-2.1 | 7
0.033
14
0.6-1.8
0.6-2.1
0.6-2.4
0.9-2.7
9
0.047
17
0.9-2.1
0.9-2.4
0.9-2.7
0.9-3.4
10
0.064
20
0.9-3.1
0.9-3.4
1.2-3.7 | 10
0.038
19
0.6-2.1
0.6-2.4
0.9-3.1
1.2-3.1
12
0.057
22
0.9-2.4
0.9-2.7
0.9-3.1
1.2-3.4
15
0.076
25
0.9-3.1
0.9-3.1
1.2-3.7 | 14
0.045
23
0.9-2.1
0.9-2.7
1.2-3.1
1.5-3.4
17
0.066
26
0.9-2.4
0.9-3.1
1.2-3.4
1.5-3.7
19
0.090
29
1.2-3.1
1.2-3.7
1.5-4.3
1.8-4.3 | 18
0.052
27
0.9-2.4
1.2-3.7
1.8-4.0
21
0.076
30
0.9-2.7
1.2-3.1
1.2-3.7
1.8-4.0
25
0.102
33
1.2-3.4
1.5-4.0
1.5-4.6
2.4-4.6 | 27
0.064
33
1.5-2.7
1.5-3.1
1.8-4.0
33
0.092
36
1.5-3.1
1.5-3.4
1.8-4.3
2.1-4.6
39
0.127
39
1.8-3.7
1.8-4.3
2.1-5.2 | 39
0.078
38
1.8-3.1
1.8-3.7
2.1-4.3
2.4-4.3
48
0.111
41
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.9
56
0.151
44
2.4-4.0
2.1-4.9
2.7-5.5
3.4-5.5 | 54
0.090
42
1.8-3.1
1.8-4.0
2.1-4.6
65
0.130
45
2.1-3.4
2.1-4.3
2.4-5.2
3.1-5.2
76
0.177
48
2.7-4.3
2.7-5.2
3.1-6.1 | | 150 mm
RD
175 mm | Tot. Press., Flow Rate, n NC Throw, M 2-W 1-W Tot. Press., Flow Rate, n NC Throw, M 1-W Tot. Press., Flow Rate, n NC Throw, M 1-W Tot. Press., Flow Rate, n NC Throw, Tot. Press., Flow Rate, n NC Throw, Tot. Press., Flow Rate, n NC Throw, M 1-W Tot. Press., Flow Rate, n | Pa n³/s VAY VAY VAY VAY VAY VAY VAY VAY VAY VA | 3
0.019
-
0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8
4
0.028
-
0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8
4
0.038
-
0.3-1.5
0.6-1.8 | 5
0.226
 | 7
0.033
14
0.6-1.8
0.6-2.1
0.6-2.4
0.9-2.7
9
0.047
17
0.9-2.1
0.9-2.4
0.9-2.7
0.9-3.4
10
0.064
20
0.9-2.7
0.9-3.1
0.9-3.1
10-3.7
12-3.7 | 10
0.038
19
0.6-2.1
0.6-2.4
0.9-3.1
1.2-3.1
12
0.057
22
0.9-2.4
0.9-2.7
0.9-3.1
1.2-3.4
15
0.076
25
0.9-3.1
0.9-3.1
1.5-3.4
1.5-3.4 | 14
0.045
23
0.9-2.1
0.9-2.7
1.2-3.1
1.5-3.4
17
0.066
26
0.9-2.4
0.9-3.1
1.2-3.4
1.5-3.7
19
0.090
29
1.2-3.1
1.2-3.1
1.2-3.4
1.5-3.7 | 18
0.052
27
0.9-2.4
1.2-3.1
1.2-3.7
1.8-4.0
21
0.076
30
0.9-2.7
1.2-3.1
1.2-3.7
1.8-4.0
25
0.102
33
1.2-3.4
1.5-4.0
1.5-4.0
2.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0
1.5-4.0 | 27
0.064
33
1.5-2.7
1.5-3.1
1.8-4.0
1.8-4.0
33
0.092
36
1.5-3.1
1.5-3.4
1.8-4.3
2.1-4.6
39
0.127
39
1.8-3.7
1.8-4.3
2.1-5.2
2.7-5.2 | 39
0.078
38
1.8-3.1
1.8-3.7
2.1-4.3
2.4-4.3
48
0.111
41
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.9
56
0.151
44
2.4-4.0
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9
2.1-4.9 | 54
0.090
42
1.8-3.1
1.8-4.0
2.1-4.6
65
0.130
45
2.1-3.4
2.1-4.3
2.4-5.2
3.1-5.2
76
0.177
48
2.7-4.3
2.7-5.2
3.1-6.1
94
0.165 | | 150 mm
RD
175 mm | Tot. Press., Flow Rate, n NC 4-V Throw, 3-V 1-W Tot. Press., Flow Rate, n NC Throw, M 2-V 1-W Tot. Press., Flow Rate, n NC Throw, A-V Throw, M 2-W Throw, M 1-V Tot. Press., Flow Rate, n NC 4-V Throw, M 1-V Throw, A-V | Pa n³/s VAY | 3
0.019
-
0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8
4
0.028
-
0.3-1.2
0.3-1.5
0.6-1.8
4
0.038
-
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5 | 5
0.226

0.6-1.5
0.6-1.8
0.6-2.4
6
0.038

0.6-1.5
0.6-2.1
0.9-2.7
7
0.050
14
0.6-2.1
0.6-2.1
0.6-2.7
0.9-3.4
8
0.6-2.1
0.6-2.7
0.9-3.4 | 7
0.033
14
0.6-1.8
0.6-2.1
0.6-2.4
0.9-2.7
9
0.047
17
0.9-2.1
0.9-2.4
0.9-2.7
0.9-3.4
10
0.064
20
0.9-3.1
10.9-3.4
1.2-3.7
12
0.059
19
0.9-2.7
0.9-2.4
0.9-2.7
0.9-3.1
1.2-3.4 | 10
0.038
19
0.6-2.1
0.6-2.4
0.9-3.1
1.2-3.1
12
0.057
22
0.9-2.4
0.9-2.7
0.9-3.1
1.2-3.4
15
0.076
25
0.9-3.4
1.2-3.7
1.5-3.4
18
0.071
24
0.9-2.7
0.9-3.1
1.2-3.7
1.5-3.7 | 14
0.045
23
0.9-2.1
0.9-2.7
1.2-3.1
1.5-3.4
17
0.066
26
0.9-2.4
0.9-3.1
1.2-3.4
1.5-3.7
19
0.090
29
1.2-3.1
1.2-3.7
1.5-4.3
1.8-4.3
24
0.083
28
1.2-2.7
1.2-3.4
1.5-4.0
1.8-4.0 | 18
0.052
27
0.9-2.4
1.2-3.7
1.8-4.0
21
0.076
30
0.9-2.7
1.2-3.1
1.2-3.7
1.8-4.0
25
0.102
33
1.2-3.4
1.5-4.6
2.4-4.6
31
0.094
32
1.2-3.7
1.5-4.3
2.1-4.3 | 27
0.064
33
1.5-2.7
1.5-3.1
1.8-4.0
1.8-4.0
33
0.092
36
1.5-3.1
1.5-3.4
1.8-4.3
2.1-4.6
39
0.127
39
1.8-3.7
1.8-4.3
2.1-5.2
2.7-5.2 | 39
0.078
38
1.8-3.1
1.8-3.7
2.1-4.3
2.4-4.3
48
0.111
41
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.9
56
0.151
44
2.4-4.0
2.1-4.9
2.7-5.5
3.4-5.5
69
0.142
43
2.1-3.7
2.1-4.6
2.4-5.2
3.1-5.2 | 54
0.090
42
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.6
65
0.130
45
2.1-3.4
2.1-4.3
2.4-5.2
3.1-5.2
76
0.177
48
2.7-4.3
2.7-5.2
3.1-6.1
3.7-6.1
94
0.165
47
2.4-4.0
2.4-4.9
2.7-5.8
3.4-5.8 | | 150 mm
RD
175 mm
RD | Tot. Press., Flow Rate, n NC 4-V Throw, 3-V 1-W Tot. Press., Flow Rate, n NC Throw, 3-V 1-V Tot. Press., Flow Rate, n NC Throw, 3-V 1-V Throw, 3-V 1-V Tot. Press., Flow Rate, n NC Throw, 3-V 1-V Tot. Press., Flow Rate, n NC Throw, 1-V Tot. Press., Flow Rate, n NC Throw, 1-V Tot. Press., Flow Rate, n NC Throw, 1-V Tot. Press., Flow Rate, n NC | Pa n³/s VAY | 3
0.019
-
0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8
4
0.028
-
0.3-1.2
0.3-1.5
0.6-1.8
4
0.038
-
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5 | 5
0.226

0.6-1.5
0.6-1.8
0.6-2.4
6
0.038

0.6-1.5
0.6-2.1
0.9-2.7
7
0.050
14
0.6-2.1
0.6-2.7
0.9-3.4
8
0.047
13
0.6-2.1
0.6-2.1
0.6-2.1
0.6-2.1
13
0.6-2.1
0.6-2.1 | 7
0.033
14
0.6-1.8
0.6-2.1
0.6-2.4
0.9-2.7
9
0.047
17
0.9-2.1
0.9-2.4
0.9-2.7
0.9-3.4
10
0.064
20
0.9-3.1
0.9-3.4
1.2-3.7
12
0.9-2.7
0.9-3.4
1.2-3.7 | 10
0.038
19
0.6-2.1
0.6-2.4
0.9-3.1
1.2-3.1
12
0.057
22
0.9-2.4
0.9-2.7
0.9-3.1
1.2-3.4
15
0.076
25
0.9-3.1
0.9-3.4
1.2-3.7
1.5-3.4
18
0.071
24
0.9-2.7
0.9-3.1
1.2-3.7
1.5-3.4 | 14
0.045
23
0.9-2.1
0.9-2.7
1.2-3.1
1.5-3.4
17
0.066
26
0.9-2.4
0.9-3.1
1.2-3.4
1.5-3.7
19
0.090
29
1.2-3.1
1.2-3.7
1.5-4.3
1.8-4.3
24
0.083
28
1.2-2.7
1.2-3.4
1.5-4.0
1.8-4.0
53
0.248 | 18
0.052
27
0.9-2.4
1.2-3.1
1.2-3.7
1.8-4.0
21
0.076
30
0.9-2.7
1.2-3.1
1.2-3.7
1.8-4.0
25
0.102
33
1.2-3.4
1.5-4.6
2.4-4.6
31
0.094
32
1.2-3.1
1.5-3.7
1.5-4.3
2.4-4.6
31
0.094
32
1.2-3.1
1.5-3.7
1.5-4.3
2.4-4.6 | 27
0.064
33
1.5-2.7
1.5-3.1
1.8-4.0
1.8-4.0
33
0.092
36
1.5-3.1
1.5-3.4
1.8-4.3
2.1-4.6
39
0.127
39
1.8-3.7
1.8-4.3
2.1-5.2
2.7-5.2
48
0.118
38
1.8-3.4
1.8-4.0
2.1-4.9
2.4-4.9
108
0.354 | 39
0.078
38
1.8-3.1
1.8-3.7
2.1-4.3
2.4-4.3
48
0.111
41
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.9
56
0.151
44
2.4-4.0
2.1-4.9
2.7-5.5
3.4-5.5
69
0.142
43
2.1-3.7
2.1-4.6
2.4-5.2
3.1-5.2 | 54
0.090
42
1.8-3.1
1.8-4.0
2.1-4.6
65
0.130
45
2.1-3.4
2.1-4.3
2.4-5.2
3.1-5.2
76
0.177
48
2.7-4.3
2.7-5.2
3.1-6.1
3.7-6.1
94
0.165
47
2.4-4.9
2.7-5.8
3.4-5.8
210
0.496 | | 150 mm
RD
175 mm
RD | Tot. Press., Flow Rate, n NC 4-V Throw, 3-V 1-W Tot. Press., Flow Rate, n NC Throw, M Tot. Press., Flow Rate, n NC Throw, C Tot. Press., C Throw, Throw | Pa n³/s VAY | 3
0.019
-
0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8
4
0.028
-
0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8
4
0.038
-
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5
0.3-1.5 | 5
0.226
-
0.6-1.5
0.6-1.8
0.6-2.4
6
0.038
-
0.6-1.5
0.6-1.8
0.6-2.1
0.9-2.7
7
0.050
14
0.6-2.1
0.6-2.7
0.9-3.4
8
0.047
13
0.6-2.1
0.6-2.1
0.6-2.1
0.6-2.1 | 7
0.033
14
0.6-1.8
0.6-2.1
0.6-2.4
0.9-2.7
9
0.047
17
0.9-2.1
0.9-2.4
0.9-2.7
0.9-3.4
10
0.064
20
0.9-3.1
1.2-3.7
12
0.9-2.7
0.9-2.4
1.2-3.7 | 10
0.038
19
0.6-2.1
0.6-2.4
0.9-3.1
1.2-3.1
12
0.057
22
0.9-2.4
0.9-2.7
0.9-3.1
1.2-3.4
15
0.076
25
0.9-3.1
0.9-3.4
1.2-3.7
1.5-3.4
18
0.071
24
0.9-2.7
0.9-2.7
0.9-3.1
1.2-3.7
1.5-3.7 | 14
0.045
23
0.9-2.1
0.9-2.7
1.2-3.1
1.5-3.4
17
0.066
26
0.9-2.4
0.9-3.1
1.2-3.4
1.5-3.7
19
0.090
29
1.2-3.1
1.2-3.7
1.5-4.3
1.8-4.3
24
0.083
28
1.2-2.7
1.2-3.4
1.5-3.4 | 18
0.052
27
0.9-2.4
1.2-3.7
1.8-4.0
21
0.076
30
0.9-2.7
1.2-3.1
1.2-3.7
1.8-4.0
25
0.102
33
1.2-3.4
1.5-4.6
2.4-4.6
31
0.094
32
1.2-3.1
1.5-3.7
1.5-3.7
1.5-4.3
2.1-4.3
69 | 27
0.064
33
1.5-2.7
1.5-3.1
1.8-4.0
1.8-4.0
33
0.092
36
1.5-3.1
1.5-3.4
1.8-4.3
2.1-4.6
39
0.127
39
1.8-3.7
1.8-4.3
2.1-5.2
2.7-5.2
48
0.118
38
1.8-3.4
1.8-4.0
2.1-4.9
2.4-4.9 | 39
0.078
38
1.8-3.1
1.8-3.7
2.1-4.3
2.4-4.3
48
0.111
41
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.9
56
0.151
44
2.4-4.0
2.1-4.9
2.7-5.5
3.4-5.5
69
0.142
43
2.1-3.7
2.1-4.6
2.4-5.2
3.1-5.2 | 54
0.090
42
1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.6
65
0.130
45
2.1-3.4
2.1-4.3
2.4-5.2
3.1-5.2
76
0.177
48
2.7-4.3
2.7-5.2
3.1-6.1
3.7-6.1
94
0.165
47
2.4-4.0
2.4-4.9
2.7-5.8
3.4-5.8 | ## Performance Data – CPS & CPR ## 400 x 400 Module Size | Duct Size | | Velocity, m/s | 1.53 | 2.04 | 2.55 | 3.06 | 3.57 | 4.08 | 5.1 | 6.12 | 7.14 | |-----------|------------------------------|------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Duct Size | Vel. | Press., Pa | 2 | 3 | 4 | 6 | 8 | 10 | 16 | 23 | 31 | | | Tot. Press., Pa | | | | | 10 | 14 | 18 | 28 | 40 | 54 | | | Flow Rate, m³/s | | 0.019 | 0.026 | 0.033 | 0.038 | 0.045 | 0.052 | 0.064 | 0.078 | 0.090 | | | | NC | - | - | 14 | 19 | 23 | 27 | 33 | 38 | 42 | | 125 mm | т. | 4-WAY | 0.3-1.2 | 0.6-1.5 | 0.6-1.8 | 0.6-2.1 | 0.9-2.1 | 0.9-2.4 | 1.5-2.7 | 1.8-3.1 | 1.8-3.1 | | RD | Throw, | 3-WAY | 0.3-1.2 | 0.6-1.8 | 0.6-2.1 | 0.6-2.4 | 0.9-2.7 | 1.2-3.1 | 1.5-3.1 | 1.8-3.7 | 1.8-4.0 | | | m | 2-WAY | 0.3-1.5 | 0.6-1.8 | 0.6-2.4 | 0.9-3.1 | 1.2-3.1 | 1.2-3.7 | 1.8-4.0 | 2.1-4.3 | 2.1-4.6 | | | | 1-WAY | 0.6-1.8 | 0.6-2.4 | 0.9-2.7 | 1.2-3.1 | 1.5-3.4 | 1.8-4.0 | 1.8-4.0 | 2.4-4.3 | 2.7-4.6 | | | | Press., Pa | | | | 12 | 17 | 21 | 33 | 48 | 65 | | | Flow | Rate, m³/s | 0.028 | 0.038 | 0.047 | 0.057 | 0.066 | 0.076 | 0.094 | 0.110 | 0.130 | | 450 | | NC | 0.0.1.0 | | 17 | 22 | 26 | 30 | 36 | 41 | 45 | | 150 mm | Throw, | 4-WAY | 0.3-1.2 | 0.6-1.5 | 0.9-2.1 | 0.9-2.4 | 0.9-2.4 | 0.9-2.7 | 1.5-3.1 | 1.8-3.1 | 2.1-3.4 | | RD | · | 3-WAY | 0.3-1.2 | 0.6-1.8 | 0.9-2.4 | 0.9-2.7 | 0.9-3.1 | 1.2-3.1 | 1.5-3.4 | 1.8-4.0 | 2.1-4.3 | | | m | 2-WAY | 0.3-1.5 | 0.6-2.1 | 0.9-2.7 | 0.9-3.1 | 1.2-3.4 | 1.2-3.7 | 1.8-4.3 | 2.1-4.6 | 2.4-5.2 | | | - | 1-WAY | 0.6-1.8 | 0.9-2.7 | 0.9-3.4 | 1.2-3.4 | 1.5-3.7 | 1.8-4.0 | 2.1-4.6 | 2.7-4.9 | 3.1-5.2 | | | | Press., Pa | 4
0.038 | 7
0.050 | 10
0.064 | 15
0.076 | 19
0.090 | 25
0.102 | 39
0.127 | 56
0.151 | 76
0.177 | | 175 mm | Flow | Rate, m³/s
NC | 0.038 | 0.050
14 | 20 | 25 | 29 | 33 | 39 | 0.151
44 | 48 | | RD | | 4-WAY | 0.3-1.5 | 0.6-1.8 | 0.9-2.7 | 0.9-3.1 | 1.2-3.1 | 1.2-3.4 | 1.8-3.7 | 2.4-4.0 | 2.7-4.3 | | or | Throw, | 3-WAY | 0.3-1.5 | 0.6-1.6 | 0.9-2.7 | 0.9-3.1 | 1.2-3.1 | 1.5-4.0 | 1.8-4.3 | 2.4-4.0 | 2.7-4.3 | | 150 x 150 | Í | 2-WAY | 0.3-1.3 | 0.6-2.7 | 0.9-3.4 | 1.2-3.I | 1.5-4.3 | 1.5-4.6 | 2.1-5.2 | 2.7-5.5 | 3.1-6.1 | | 130 X 130 | m | 1-WAY | 0.6-2.4 | 0.9-3.4 | 1.2-3.7 | 1.5-4.0 | 1.8-4.3 | 2.4-4.6 | 2.7-5.2 | 3.4-5.5 | 3.7-6.1 | | | Tot | Press., Pa | 5 | 7 | 12 | 17 | 22 | 29 | 45 | 64 | 88 | | | Flow Rate, m ³ /s | | 0.050 | 0.066 | 0.083 | 0.099 | 0.116 | 0.132 | 0.165 | 0.198 | 0.231 | | | NC | | - | 16 | 22 | 27 | 31 | 35 | 41 | 46 | 50 | | 200 mm | | 4-WAY | 0.3-1.8 | 0.6-2.4 | 1.2-3.1 | 1.2-3.4 | 1.2-3.7 | 1.5-3.7 | 1.8-4.0 | 2.4-4.3 | 2.7-4.9 | | RD | Throw, | 3-WAY | 0.3-1.8 | 0.6-2.4 | 1.2-3.4 | 1.2-4.0 | 1.5-4.0 | 1.5-4.3 | 2.1-4.9 | 2.7-5.5 | 3.1-5.8 | | | m | 2-WAY | 0.3-2.1 | 0.6-3.1 | 1.2-3.7 | 1.2-4.3 | 1.5-4.6 | 1.8-5.2 | 2.4-5.8 | 3.1-6.4 | 3.7-6.7 | | | | 1-WAY | 0.9-2.7 | 1.2-3.7 | 1.5-4.0 | 1.8-4.3 | 2.1-4.6 | 2.4-5.2 | 3.1-5.8 | 4.0-6.4 | 4.0-6.7 | | | Tot. | Press., Pa | 6 | 10 | 16 | 23 | 30 | 39 | 61 | 87 | 119 | | | | Rate, m³/s | 0.078 | 0.104 | 0.127 | 0.153 | 0.179 | 0.205 | 0.257 | 0.309 | 0.359 | | | | NC | 11 | 19 | 25 | 30 | 34 | 38 | 44 | 49 | 53 | | 250 mm | | 4-WAY | 0.3-2.4 | 0.6-3.1 | 1.2-3.7 | 1.2-4.0 | 1.8-4.3 | 2.1-4.3 | 2.4-5.2 | 3.1-5.5 | 3.4-6.1 | | RD | Throw, | 3-WAY | 0.3-2.4 | 0.6-3.1 | 1.2-4.0 | 1.8-4.6 | 2.1-5.2 | 2.1-5.5 | 2.7-6.1 | 3.4-6.7 | 3.7-7.0 | | | m | 2-WAY | 0.3-2.7 | 0.6-3.7 | 1.2-4.3 | 1.8-5.5 | 2.1-5.8 | 2.4-6.4 | 3.1-7.0 | 3.7-7.6 | 4.3-8.5 | | | | 1-WAY | 0.3-3.4 | 1.2-4.3 | 2.1-5.2 | 2.4-5.5 | 2.7-5.8 | 3.1-6.4 | 3.7-7.0 | 4.6-7.6 | 4.6-8.5 | | | | Press., Pa | | | 14 | 20 | 27 | 34 | 54 | 76 | 104 | | | Flow | Rate, m³/s | 0.064 | 0.085 | 0.104 | 0.125 | 0.146 | 0.168 | 0.210 | 0.253 | 0.295 | | 200 200 | | NC | 9 | 17 | 23 | 28 | 32 | 36 | 42 | 47 | 51 | | 200 x 200 | Thrau | 4-WAY | 0.3-2.1 | 0.6-2.7 | 1.2-3.4 | 1.2-3.7 | 1.5-4.0 | 1.8-4.0 | 2.1-4.6 | 2.7-4.9 | 3.1-5.5 | | | Throw, | 3-WAY | 0.3-2.1 | 0.6-2.7 | 1.2-3.7 | 1.5-4.3 | 1.8-4.6 | 1.8-4.9 | 2.4-5.5 | 3.1-6.1 | 3.4-6.4 | | | m | 2-WAY | 0.3-2.4 | 0.6-3.4 | 1.2-4.0 | 1.5-4.9 | 1.8-5.2 | 2.1-5.8 | 2.7-6.4 | 3.4-7.0 | 4.0-7.6 | | | N. O. | 1-WAY | 0.9-3.1 | 1.2-4.0 | 1.8-4.6 | 2.1-4.9 | 2.4-5.2 | 2.7-5.8 | 3.4-6.4 | 4.3-7.0 | 4.3-7.6 | | 250 050 | | at. Press., Pa | 8 | 13 | 19 | 28 | 39 | 50 | 78 | 113 | 154 | | 350 x 350 | Flow | Rate, m³/s | 0.194 | 0.257 | 0.321 | 0.385 | 0.449 | 0.515 | 0.642 | 0.770 | 0.897 | | | NC | | | 18 | 25 | 31 | 36 | 40 | 47 | 54 | 59 | * performance data for CPR. | Guide Product Weights | | | | | | | | | | |---------------------------|------|------|--|--|--|--|--|--|--| | Approximate Weight in Kg. | | | | | | | | | | | Size | CPR | CPS | | | | | | | | | 300 x 300 | 1.35 | 1.75 | | | | | | | | | 600 x 600 | 1.98 | 2.38 | | | | | | | | # CPS & CPR - Performance Data | | | | | | | | | 50 | 0 x 500 | Modul | e Size | |-----------------------|-------------|------------------------------------|--|--|--|--|--|--|--|--|--| | Duct Size | | Velocity, m/s
. Press., Pa | 1.53
2 | 2.04
3 | 2.55
4 | 3.06
6 | 3.57
8 | 4.08
10 | 5.1
16 | 6.12
23 | 7.14
31 | | | | Press., Pa
Rate, m³/s
NC | 3
0.019
- | 5
0.026
- | 7
0.033
14 | 10
0.038
19 | 14
0.045
23 | 18
0.052
27 | 28
0.064
33 | 40
0.078
38 | 54
0.090
42 | | 125 mm
RD | Throw,
m | 4-WAY
3-WAY
2-WAY
1-WAY | 0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8 | 0.6-1.5
0.6-1.8
0.6-1.8
0.6-2.4 | 0.6-1.8
0.6-2.1
0.6-2.4
0.9-2.7 | 0.6-2.1
0.6-2.4
0.9-3.1
1.2-3.1 | 0.9-2.1
0.9-2.7
1.2-3.1
1.5-3.4 | 0.9-2.4
1.2-3.1
1.2-3.7
1.8-4.0 | 1.5-2.7
1.5-3.1
1.8-4.0
1.8-4.0 | 1.8-3.1
1.8-3.7
2.1-4.3
2.4-4.3 | 1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.6 | | | | Press., Pa
Rate, m³/s
NC | 4
0.028
- | 6
0.038
- | 9
0.047
17 | 12
0.057
22 | 17
0.066
26 | 21
0.076
30 | 33
0.094
36 | 48
0.110
41 | 65
0.130
45 | | 150 mm
RD | Throw,
m | 4-WAY
3-WAY
2-WAY
1-WAY | 0.3-1.2
0.3-1.2
0.3-1.5
0.6-1.8 | 0.6-1.5
0.6-1.8
0.6-2.1
0.9-2.7 | 0.9-2.1
0.9-2.4
0.9-2.7
0.9-3.4 | 0.9-2.4
0.9-2.7
0.9-3.1
1.4-3.4 | 0.9-2.4
0.9-3.1
1.2-3.4
1.5-3.7 | 0.9-2.7
1.2-3.1
1.2-3.7
1.8-4.0 | 1.5-3.1
1.5-3.4
1.8-4.3
2.1-4.6 | 1.8-3.1
1.8-4.0
2.1-4.6
2.7-4.9 | 2.1-3.4
2.1-4.3
2.4-5.2
3.1-5.2 | | 175 mm | | Press., Pa
Rate, m³/s
NC | 4
0.038
- | 7
0.050
13 | 10
0.064
19 | 14
0.076
24 | 18
0.090
28 | 23
0.102
32 | 37
0.127
38 | 52
0.151
43 | 71
0.177
47 | | RD
or
150 x 150 | Throw,
m | 4-WAY
3-WAY
2-WAY
1-WAY | 0.3-1.5
0.3-1.5
0.3-1.8
0.6-2.4 | 0.6-1.8
0.6-2.1
0.6-2.7
0.9-3.4 | 0.9-2.7
0.9-3.1
0.9-3.4
1.2-3.7 | 0.9-3.1
0.9-3.4
1.2-3.7
1.5-4.0 | 1.2-3.1
1.2-3.7
1.5-4.3
1.8-4.3 | 1.2-3.4
1.5-4.0
1.5-4.6
2.4-4.6 | 1.8-3.7
1.8-4.3
2.1-5.2
2.7-5.2 | 2.4-4.0
2.1-4.9
2.7-5.5
3.4-5.5 | 2.7-4.3
2.7-5.2
3.1-6.1
3.7-6.1 | | | | Press., Pa
Rate, m³/s
NC | 4
0.050
- | 6
0.066
16 | 10
0.083
22 | 14
0.099
27 | 19
0.116
31 | 24
0.132
35 | 38
0.165
41 | 54
0.198
46 | 74
0.231
50 | | 200 mm
RD | Throw,
m | 4-WAY
3-WAY
2-WAY
1-WAY | 0.3-1.8
0.3-1.8
0.3-2.1
0.9-2.7 | 0.6-2.4
0.6-2.4
0.6-3.1
1.2-3.7 | 1.2-3.1
1.2-3.4
1.2-3.7
1.5-4.0 | 1.2-3.4
1.2-4.0
1.2-4.3
1.8-4.3 | 1.2-3.7
1.5-4.0
1.5-4.6
2.1-4.6 | 1.5-3.7
1.5-4.3
1.8-5.2
2.4-5.2 | 1.8-4.0
2.1-4.9
2.4-5.8
3.1-5.8 | 2.4-4.3
2.7-5.5
3.1-6.4
4.0-6.4 | 2.7-4.9
3.1-5.8
3.7-6.7
4.0-6.7 | | 250 mm | | Press., Pa
Rate, m³/s
NC | 5
0.078
11 | 8
0.104
19 | 13
0.127
25 | 18
0.153
30 | 24
0.179
34 | 31
0.205
38 | 49
0.257
44 | 70
0.309
49 | 95
0.359
53 | | RD
or
200 x 200 | Throw,
m | 4-WAY
3-WAY
2-WAY
1-WAY | 0.3-2.4
0.3-2.4
0.3-2.7
0.9-3.4 | 0.6-3.1
0.6-3.1
0.6-3.7
1.2-4.3 | 1.2-3.7
1.2-4.0
1.2-4.3
1.2-5.2 | 1.2-4.0
1.8-4.6
1.8-5.5
2.4-5.5 | 1.8-4.3
2.1-5.2
2.1-5.8
2.7-5.8 | 2.1-4.3
2.1-5.5
2.4-6.4
3.1-6.4 | 2.4-5.2
2.7-6.1
3.1-7.0
3.7-7.0 | 3.1-5.5
3.4-6.7
3.7-7.6
4.6-7.6 | 3.4-6.1
3.7-7.0
4.3-8.5
4.6-8.5 | | | | Press., Pa
Rate, m³/s
NC | 6
0.111
14 | 10
0.149
22 | 15
0.184
28 | 22
0.222
33 | 30
0.260
37 | 38
0.297
41 | 60
0.371
47 | 85
0.446
52 | 116
0.516
56 | | 300 mm
RD | Throw,
m | 4-WAY
3-WAY
2-WAY
1-WAY | 0.6-2.1
0.6-3.1
0.6-3.4
0.9-4.3 | 0.9-3.7
0.9-4.0
0.9-4.6
1.5-5.5 | 1.5-4.3
1.5-4.9
1.5-5.5
2.1-6.1 | 1.5-4.9
1.8-5.5
2.1-6.1
2.4-6.4 | 1.8-5.2
2.1-6.1
2.4-7.0
3.4-7.0 | 2.1-5.5
2.4-6.4
2.7-7.6
3.4-7.6 | 2.7-6.1
3.4-7.0
3.7-8.5
4.6-8.5 | 3.7-6.4
4.0-8.2
4.6-9.5
5.5-9.5 | 4.3-7.0
4.6-8.5
5.2-10.1
9.5-10.1 | | | | Press., Pa
Rate, m³/s
NC | 8
0.151
19 | 13
0.201
27 | 20
0.250
38 | 29
0.300
38 | 38
0.349
42 | 49
0.401
46 | 77
0.500
52 | 110
0.600
57 | 151
0.699
61 | | 350 mm
RD | Throw,
m | 4-WAY
3-WAY
2-WAY
1-WAY | 0.6-3.1
0.6-3.4
0.9-3.7
1.2-4.9 | 1.2-4.0
1.2-4.3
1.2-5.2
1.8-6.1 | 1.8-4.9
1.8-5.5
1.8-6.1
2.4-7.0 | 1.8-5.5
2.1-6.1
2.4-7.0
3.1-7.3 | 2.1-5.8
2.4-7.0
3.1-7.9
3.7-7.9 | 2.4-6.1
3.1-7.3
3.4-8.8
4.0-8.8 | 3.4-7.0
3.7-7.9
4.0-9.5
5.2-9.5 | 4.0-7.3
4.3-9.2
5.2-10.7
6.1-10.7 | 4.9-7.9
5.2-9.5
5.8-11.3
6.7-11.3 | | | | Press., Pa
Rate, m³/s
NC | 6
0.099
13 | 9
0.132
21 | 15
0.165
27 | 21
0.196
32 | 28
0.229
36 | 36
0.262
40 | 56
0.328
46 | 80
0.394
51 | 109
0.460
55 | | 250 x 250 | Throw,
m | 4-WAY
3-WAY
2-WAY
1-WAY | 0.6-2.4
0.6-2.7
0.6-3.1
0.9-4.0 | 0.9-3.4
0.9-3.7
0.9-4.3
1.5-5.2 | 1.5-4.0
1.5-4.6
1.5-5.2
2.1-6.8 | 1.5-4.6
1.8-5.2
2.1-5.8
2.4-6.1 | 1.8-4.9
2.1-5.8
2.4-6.7
3.1-6.7 | 2.1-5.2
2.4-6.1
2.7-7.3
3.4-7.3 | 2.7-5.8
3.1-6.7
3.4-7.9
4.3-7.9 | 3.4-6.1
3.7-7.6
4.3-8.8
5.2-8.8 | 4.0-6.7
4.3-7.9
4.9-9.5
5.5-9.5 | | 450 x 450 | | at. Press., Pa
Rate, m³/s
NC | 8
0.319
10 | 13
0.425
19 | 19
0.529
26 | 28
0.637
32 | 39
0.746
37 | 50
0.850
41 | 78
1.060
48 | 113
1.270
55 | 154
1.490
60 | ^{*} performance data for CPR. 190D # Performance Data – CPS & CPR ## 600 x 600 Module Size | Duct Size | Neck \ | Velocity, m/s | 1.53 | 2.04 | 2.55 | 3.06 | 3.57 | 4.08 | 5.1 | 6.12 | 7.14 | |--------------|--------|--------------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | Duct Size | | . Press., Pa | 2 | 3 | 4 | 6 | 8 | 10 | 16 | 23 | 31 | | | | Press., Pa | 3
0.019 | 5
0.026 | 7
0.033 | 10
0.038 | 14
0.045 | 18
0.052 | 28
0.064 | 40
0.078 | 54
0.090 | | | FIOW | Rate, m³/s
NC | 0.019 | 0.026 | 14 | 19 | 23 | 27 | 33 | 38 | 42 | | 125 mm | | 4-WAY | 0.3-1.2 | 0.6-1.5 | 0.6-1.8 | 0.6-2.1 | 0.9-2.1 | 0.9-2.4 | 1.5-2.7 | 1.8-3.1 | 1.8-3.1 | | RD | Throw, | 3-WAY | 0.3-1.2 | 0.6-1.8 | 0.6-2.1 | 0.6-2.4 | 0.9-2.7 | 1.2-3.1 | 1.5-3.1 | 1.8-3.7 | 1.8-4.0 | | | m | 2-WAY
1-WAY | 0.3-1.5
0.6-1.8 | 0.6-1.8
0.6-2.4 | 0.6-2.4
0.9-2.7 | 0.9-3.1
1.2-3.1 | 1.2-3.1
1.5-3.4 | 1.2-3.7
1.8-4.0 | 1.8-4.0
1.8-4.0 | 2.1-4.3
2.4-4.3 | 2.1-4.6
2.7-4.6 | | | Tot | Press., Pa | 4 | 6 | 9 | 1.2-3.1 | 1.3-3.4 | 21 | 33 | 48 | 65 | | | | Rate, m³/s | 0.028 | 0.038 | 0.047 | 0.057 | 0.066 | 0.076 | 0.094 | 0.110 | 0.130 | | 450 | | NC | - | - | 17 | 22 | 26 | 30 | 36 | 41 | 45 | | 150 mm
RD | Throw, | 4-WAY
3-WAY | 0.3-1.2
0.3-1.2 | 0.6-1.5
0.6-1.8 | 0.9-2.1
0.9-2.4 | 0.9-2.4
0.9-2.7 | 0.9-2.4
0.9-3.1 | 0.9-2.7
1.2-3.1 | 1.5-3.1
1.5-3.4 | 1.8-3.1
1.8-4.0 | 2.1-3.4
2.1-4.3 | | IVD. | m | 2-WAY | 0.3-1.5 | 0.6-2.1 | 0.9-2.7 | 0.9-3.1 | 1.2-3.4 | 1.2-3.7 | 1.8-4.3 | 2.1-4.6 | 2.4-5.2 | | | | 1-WAY | 0.6-1.8 | 0.9-2.7 | 0.9-3.4 | 1.2-3.4 | 1.5-3.7 | 1.8-4.0 | 2.1-4.6 | 2.7-4.9 | 3.1-5.2 | | | | Press., Pa | 4 | 6 | 10 | 14 | 18 | 23 | 37 | 52 | 71 | | 175 mm | Flow | Rate, m³/s
NC | 0.038 | 0.050
13 | 0.064
19 | 0.076
24 | 0.090
28 | 0.102
32 | 0.127
38 | 0.151
43 | 0.177
47 | | RD | | 4-WAY | 0.3-1.5 | 0.6-1.8 | 0.9-2.7 | 0.9-3.1 | 1.2-3.1 | 1.2-3.4 | 1.8-3.7 | 2.4-4.0 | 2.7-4.3 | | or | Throw, | 3-WAY | 0.3-1.5 | 0.6-2.1 | 0.9-3.1 | 0.9-3.4 | 1.2-3.7 | 1.5-4.0 | 1.8-4.3 | 2.1-4.9 | 2.7-5.2 | | 150 x 150 | m | 2-WAY
1-WAY | 0.3-1.8
0.6-2.4 | 0.6-2.7
0.9-3.4 | 0.9-3.4
1.2-3.7 | 1.2-3.7
1.5-4.0 | 1.5-4.3
1.8-4.3 | 1.5-4.6
2.4-4.6 | 2.1-5.2
2.7-5.2 | 2.7-5.5
3.4-5.5 | 3.1-6.1
3.7-6.1 | | | Tot | Press., Pa | 4 | 6 | 1.2-3.7 | 1.5-4.0 | 1.0-4.3 | 2.4-4.0 | 38 | 5.4-5.5 | 74 | | | | Rate, m³/s | 0.050 | 0.066 | 0.083 | 0.099 | 0.116 | 0.132 | 0.165 | 0.198 | 0.231 | | 200 | | NC 4 WAY | 0.24.0 | 17 | 23 | 28 | 32 | 36 | 42 | 47 | 51 | | 200 mm
RD | Throw, | 4-WAY
3-WAY | 0.3-1.8
0.3-1.8 | 0.6-2.4
0.6-2.4 | 1.2-3.1
1.2-3.4 | 1.2-3.4
1.2-4.0 | 1.2-3.7
1.5-4.0 | 1.5-3.7
1.5-4.3 | 1.8-4.0
2.1-4.9 | 2.4-4.3
2.7-5.5 | 2.7-4.9
3.1-5.8 | | ND | m | 2-WAY | 0.3-2.1 | 0.6-3.1 | 1.2-3.7 | 1.2-4.3 | 1.5-4.6 | 1.8-5.2 | 2.4-5.8 | 3.1-6.4 | 3.7-6.7 | | | | 1-WAY | 0.9-2.7 | 1.2-3.7 | 1.5-4.0 | 1.8-4.3 | 2.1-4.6 | 2.4-5.2 | 3.1-5.8 | 4.0-6.4 | 4.0-6.7 | | | | Press., Pa | 4 | 7
0.104 | 11
0.127 | 16
0.153 | 21
0.179 | 28
0.205 | 43
0.257 | 61 | 83
0.359 | | 250 mm | FIOW | Rate, m³/s
NC | 0.078
11 | 19 | 25 | 30 | 34 | 38 | 0.25r
44 | 0.309
49 | 0.359
53 | | RD | T. | 4-WAY | 0.3-2.4 | 0.6-3.1 | 1.2-3.7 | 1.2-4.0 | 1.8-4.3 | 2.1-4.3 | 2.4-5.2 | 3.1-5.5 | 3.4-6.1 | | or | Throw, | 3-WAY | 0.3-2.4 | 0.6-3.1 | 1.2-4.0 | 1.8-4.6 | 2.1-5.2 | 2.1-5.5 | 2.7-6.1 | 3.4-6.7 | 3.7-7.0 | | 200 x 200 | m | 2-WAY
1-WAY | 0.3-2.7
0.3-3.4 | 0.6-3.7
1.2-4.3 | 1.2-4.3
2.1-5.2 | 1.8-5.5
2.4-5.5 | 2.1-5.8
2.7-5.8 | 2.4-6.4
3.1-6.4 | 3.1-7.0
3.7-7.0 | 3.7-7.6
4.6-7.6 | 4.3-8.5
4.6-8.5 | | | Tot. | Press., Pa | 5 | 9 | 14 | 19 | 26 | 33 | 52 | 75 | 102 | | 200 | Flow | Rate, m³/s | 0.111 | 0.149 | 0.184 | 0.222 | 0.260 | 0.297 | 0.371 | 0.446 | 0.519 | | 300 mm
RD | | NC
4-WAY | 14
0.6-2.4 | 22
0.9-3.7 | 28
1.5-4.3 | 33
1.5-4.9 | 37
1.8-5.2 | 41
2.1-5.5 | 47
2.7-6.1 | 52
3.7-6.4 | 56
4.3-7.0 | | or | Throw, | 3-WAY | 0.6-3.1 | 0.9-4.0 | 1.5-4.9 | 1.8-5.5 | 2.1-6.1 | 2.4-6.4 | 3.4-7.0 | 4.0-8.2 | 4.6-8.5 | | 250 x 250 | m | 2-WAY | 0.6-3.4 | 0.9-4.6 | 1.5-5.5 | 2.1-6.1 | 2.4-7.0 | 2.7-7.6 | 3.7-8.5 | 4.6-9.5 | 5.2-10.1 | | | Tot | 1-WAY | 0.9-4.3 | 1.5-5.5 | 2.1-6.1 | 2.4-6.4 | 3.4-7.0 | 3.4-7.6 | 4.6-8.5 | 5.5-9.5 | 9.5-10.1 | | | | Press., Pa
Rate, m³/s | 6
0.151 | 10
0.201 | 16
0.250 | 22
0.300 | 28
0.349 | 39
0.401 | 61
0.500 | 86
0.600 | 118
0.699 | | | | NC | 16 | 24 | 30 | 35 | 39 | 43 | 49 | 54 | 58 | | 350 mm
RD | Throw, | 4-WAY
3-WAY | 0.6-3.1
0.6-3.4 | 1.2-4.0
1.2-4.3 | 1.8-4.9
1.8-5.5 | 1.8-5.5
2.1-6.1 | 2.1-5.8
2.4-7.0 | 2.4-6.1
3.1-7.3 | 3.4-7.0
3.7-7.9 | 4.0-7.3
4.3-9.2 | 4.9-7.9
5.2-9.5 | | ועט | m | 2-WAY | 0.6-3.4 | 1.2-4.3 | 1.8-5.5 | 2.1-6.1 | 3.1-7.9 | 3.4-8.8 | 4.0-9.5 | 5.2-10.7 | 5.2-9.5 | | | | 1-WAY | 1.2-4.9 | 1.8-6.1 | 2.4-7.0 | 3.1-7.3 | 3.7-7.9 | 4.0-8.8 | 5.2-9.5 | 6.1-10.7 | 6.7-11.3 | | | | Press., Pa | 8 | 12 | 19 | 28 | 37 | 48 | 75
0.004 | 108 | 147 | | | Flow | Rate, m³/s
NC | 0.198
19 | 0.264
27 | 0.331
33 | 0.397
38 | 0.463
42 | 0.529
46 | 0.661
52 | 0.793
57 | 0.924
58 | | 400 mm | | 4-WAY | 0.6-3.7 | 1.5-4.6 | 1.8-5.8 | 2.4-6.1 | 2.7-6.4 | 3.4-7.3 | 4.0-7.9 | 4.6-8.5 | 5.5-9.5 | | RD | Throw, | 3-WAY | 0.9-3.7 | 1.5-5.2 | 1.8-6.1 | 2.4-7.6 | 2.7-7.9 | 3.4-8.5 | 4.3-9.8 | 5.2-10.4 | 5.8-11.6 | | | m | 2-WAY
1-WAY | 1.2-4.3
1.5-5.5 | 1.5-5.8
2.4-7.3 | 1.8-7.3
2.7-7.9 | 2.7-8.5
3.4-8.5 | 3.4-9.5
4.0-9.5 | 4.0-10.1
4.6-10.1 | 4.6-11.3
5.8-11.3 | 5.8-12.2
7.3-12.2 | 6.4-13.4
7.6-13.4 | | | | . Press., Pa | 6 | 10 | 15 | 21 | 29 | 37 | 58 | 83 | 113 | | | Flow | Rate, m ³ /s | 0.142 | 0.189 | 0.236 | 0.283 | 0.331 | 0.378 | 0.472 | 0.567 | 0.661 | | 300 x 300 | | NC
4-WAY | 16
0.6-3.1 | 24
1.2-4.0 | 30
1.5-4.9 | 35
2.1-5.2 | 39
2.4-5.5 | 43
2.7-6.1 | 49
3.4-6.7 | 54
4.0-7.3 | 58
4.6-7.9 | | | Throw, | 3-WAY | 0.6-3.1 | 1.2-4.3 | 1.5-5.2 | 2.1-6.4 | 2.4-6.7 | 2.7-7.3 | 3.7-8.2 | 4.3-8.8 | 4.9-9.8 | | | m | 2-WAY | 0.6-3.7 | 1.2-4.9 | 1.5-6.1 | 2.4-7.3 | 2.7-7.9 | 3.4-8.5 | 4.0-9.5 | 4.9-10.4 | 5.5-11.3 | | | Neg St | 1-WAY | 1.2-4.6
8 | 2.1-6.1
13 | 2.4-6.7
19 | 3.1-7.3
28 | 3.4-7.9
39 | 4.0-8.5
50 | 4.9-9.5
78 | 6.1-10.4
113 | 6.4-11.3
154 | | 550 x 550 | | v Rate, m³/s | 0.472 | 0.637 | 0.793 | 0.954 | 1.100 | 1.270 | 1.590 | 1.900 | 2.220 | | | | NC | 11 | 20 | 27 | 33 | 38 | 42 | 49 | 56 | 61 | ^{*} performance data for CPR. ## CPR, CPS, CPMS, CPSHS, CPSS, CPT & CPTR ### **Product Ordering Key and Suggested Specifications** Ceiling Perforated diffusers shall be Holyoake Series CPS, or CPR and shall consist of an extruded aluminium frame with close mitred corners and 0.75 mm aluminium perforated face in an extruded aluminium sub-frame. The face shall be removable, by means of a separate mounting frame, which if used for supply air shall be furnished with field adjustable pattern control louvers and a galvanised steel plenum with duct connection. All shall be as manufactured by Holyoake. Ceiling Perforated Maximum Security Grilles (CPMS) shall be constructed of Stainless Steel type 304 for easy wash down. The faceplate shall be constructed from a single piece with 2mm holes, with no ledges or face fixings. They shall be tested to ASTM F254 and meet a minimum grade 2 rating. All shall be as manufactured by Holyoake. Ceiling Perforated Supply High Secure diffusers shall be Holyoake Series CPSHS. These shall be constructed from a single piece of Stainless Steel 304 Grade face plate, with small 2mm diameter holes, with no ledges, or face fixings. Complete with a long welded neck sleeve for full floor penetration and neck clamping flanges, ensuring no face fixings are required. All shall be as manufactured by Holyoake. Ceiling Perforated Supply Secure diffusers shall be Holyoake Series CPSS and shall be constructed from heavy section aluminium surround to provide maximum security. 2 or 3 mm thick steel plate shall provide 30, or 40 % free area. Finished in a durable Powder Coat. All shall be as manufactured by Holyoake. Note Seismic restraints are required, but not supplied.