

BRANZ Type Test

FH12423-001 ISSUE 1

CONE CALORIMETER TEST OF ALPOLIC[™] NC

CLIENT

PSP Limited 320 Rosedale Road Albany Auckland 0632 New Zealand

All tests and procedures reported herein, unless indicated, have been performed in accordance with the laboratory's scope of accreditation

TEST SUMMARY

Objective

To conduct cone calorimeter testing and reduce the data in accordance with:

• ISO 5660:2002 Parts 1 and 2

Test sponsor

PSP Limited 320 Rosedale Road Albany Auckland 0632 New Zealand

Description of test specimen

The product as described by the client as ALPOLIC[™] NC, a white coloured nominally 4 mm thick composite panel comprised of 3 mm thick highly mineral filled core including aluminium tri-hydroxide and calcium carbonate, with a 0.5 mm coated aluminium alloy laminate on both sides.

Date of tests

11th and 28th November 2019 and 20th February 2020

LIMITATION

The results reported here relate only to the item/s tested.

TERMS AND CONDITIONS

This report is issued in accordance with the Terms and Conditions as detailed and agreed in the BRANZ Services Agreement for this work.

CONTENTS

SIG	NATORI	[ES	4
DOC	UMENT	REVISION STATUS	4
1.	GEN	ERAL	5
	1.1	Sample measurements	5
2.	EXPE	ERIMENTAL PROCEDURE	6
	2.1	Test standard	6
	2.2	Test date	6
	2.3	Specimen conditioning	6
	2.4	Specimen wrapping and preparation	6
	2.5	Test programme	
	2.6	Specimen selection	6
3.	TEST	Γ RESULTS AND REDUCED DATA	7
	3.1	Test results and reduced data – ISO 5660	7
	3.2	Indicative test result	8
4.	TEST	۲ VARIABILITY	8
5.	SUM	MARY	8

FIGURES

Figure 1: Representative specimen (front face left, core centre, back face right)	5
Figure 2: Rate of heat release versus time	9
Figure 3: Rate of smoke production per unit area	9

TABLES

Table 1: Physical parameters	5
Table 2: Test results and reduced data – ISO 5660	. 7
Table 3: Indicative test results and reduced data	8
Table 4: Heat release rate	8
Table 5: Report summary	8

SIGNATORIES

lelega

Author

J. R. Stallinger Associate Fire Testing Engineer BRANZ

Reviewer

L. F. Hersche Fire Testing Engineer IANZ Approved Signatory

DOCUMENT REVISION STATUS

ISSUE NO.	DATE ISSUED	EXPIRY DATE	DESCRIPTION
1	9/02/2021	9/02/2026	Initial Issue

1. GENERAL

The product submitted by the client for testing was identified by the client as ALPOLIC[™] NC, a white coloured nominally 4 mm thick composite panel comprised of 3 mm thick highly mineral filled core including aluminium tri-hydroxide and calcium carbonate, with a 0.5 mm coated aluminium alloy laminate on both sides. Figure 1 illustrates a representative specimen of that tested.

Figure 1: Representative specimen (front face left, core centre, back face right)

1.1 Sample measurements

The following physical parameters were measured for each specimen prior to testing.

Specimen ID	Initial p	roperties	Overall	Layer
	Mass (g)	Mean thickness (mm)	apparent density (kg/m³)	
FH12423-1-50-2	87.8	4.2	2091	Front Face
FH12423-1-50-3	89.2	4.2	2124	Front Face
FH12423-2-50-1	86.1	4.1	2100	Front Face
FH12423-3-50-1	71.6	3.8	1884	Exposed Core

Table 1: Physical parameters

Note: Shaded rows show sample tested in full herein.

2. EXPERIMENTAL PROCEDURE

2.1 Test standard

The tests were carried out and data reduced according to the test procedures described in ISO 5660: (2002), Reaction-to-fire tests – Heat release, smoke production and mass loss – Part 1: Heat release rate, and Part 2: Smoke production rate (the test standard). The sample preparation and test procedure were as described in 2.4 and 2.5.

2.2 Test date

The tests were conducted on 11th and 28th November 2019 and 20th February 2020 by Mr James Quilter and Mr James Stallinger at BRANZ Limited laboratories, Judgeford, New Zealand.

2.3 Specimen conditioning

All specimens were conditioned to moisture equilibrium (constant weight), at a temperature of $23 \pm 2^{\circ}$ C and a relative humidity of $50 \pm 5\%$ immediately prior to testing.

2.4 Specimen wrapping and preparation

All tests were conducted, and the specimens prepared in accordance with the test standard. The spark igniter and the stainless-steel retainer frame were used. All specimens were wrapped in a single layer of aluminium foil, covering the unexposed surfaces.

2.5 Test programme

The test program consisted of three replicate specimens and one indicative specimen, tested at an irradiance level of 50 kW/m². All tests were carried out with the specimen horizontal, and with a nominal duct flow rate of 0.024 m^3 /s.

2.6 Specimen selection

BRANZ was not involved in the selection of the materials submitted for testing. The test materials used were supplied to the laboratory by the client.

3. TEST RESULTS AND REDUCED DATA

3.1 Test results and reduced data – ISO 5660

Table 2: Test results and reduced data – ISO 5660

Material			ens as described i ordance with ISO		Mean
Specimen test number		FH12423-1-50-2	FH12423-1-50-3	FH12423-2-50-1	
Test Date		11/12/2019	11/12/2019	28/11/2019	
Time to sustained flaming	S	No ignition	No ignition	No ignition	-
Calibration constant		-	-	-	
Test duration ^b	S	982*	546*	1800**	1109
Mass remaining, m _f	g	73.5	78.1	70.4	74.0
Mass pyrolyzed	%	16.3%	12.4%	18.3%	15.7%
Specimen mass loss ^c	kg/m ²	1.6	1.3	1.8	1.6
Specimen mass loss rate ^c	g/m² s	1.7	2.3	1.0	1.6
Heat release rate					
peak, \dot{q}''_{\max}	kW/m ²	10.8	12.6	3.3	8.9
average, \dot{q}''_{avg}					
Over 60 s from ignition	kW/m ²	-0.6	-1.5	-1.5	-1.2
Over 180 s from ignition	kW/m ²	-0.6	0.6	-1.5	-0.5
Over 300 s from ignition	kW/m ²	-0.1	2.2	-1.2	0.3
Total heat released	MJ/m ²	0.3	1.3	1.4	1.0
Average Specific Extinction Area	m²/kg	16.6	12.7	6.9	12.1
Effective heat of combustion ^d , $\Delta h_{c,eff}$	MJ/kg	0.2	1.0	0.8	0.7
Total smoke production					
Non-flaming S _{A,1}	m²/m²	0.0	0.0	0.0	0.0
Flaming S _{A,2}	m²/m²	28.0	17.0	27.2	24.1
Total $S_A = S_{A,1} + S_{A,2}$	m²/m²	28.0	17.0	27.2	24.1

Notes: a no significant observations were recorded

 $^{\rm b}$ determined by ~* $\chi_{\rm 02}$ returning to the pre-test value within 100 ppm of oxygen concentration for 10 minutes

** 30 minutes after time to sustained flaming or without ignition

^c from ignition to end of test;

^d from the start of the test

⁺ value calculated using data beyond the official end of test time according to the test standard.

NR not recorded

3.2 Indicative test result

Specimen ID	Specimen thickness (mm)	Irradiance (kW/m²)	Time to Ignition (s)	Peak Heat Release Rate (kW/m ²)	Total Heat Released (MJ/m²)
FH12423-1-50-2	4.2	50	No ignition	10.8	0.3
FH12423-3-50-1	3.8	50	321	24.1	13.9

Table 3: Indicative test results and reduced data

Shaded row - Sample 1 result for replicate test specimens

4. TEST VARIABILITY

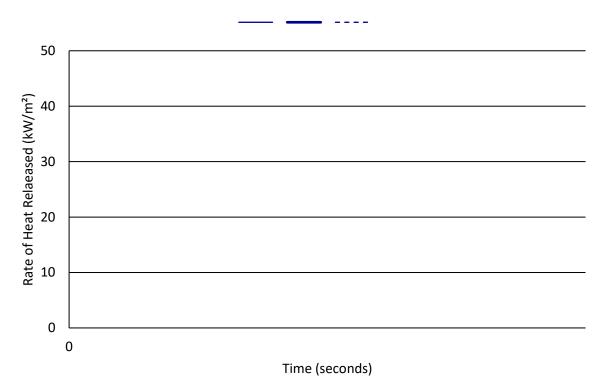
The test standards require that the mean heat release rate (HRR) readings over the first 180s from ignition for the three specimens should differ by no more than 10% of the arithmetic mean of the three readings. In the event of this criterion not being met, a further three specimens are required to be tested.

Table 4: Heat release rate

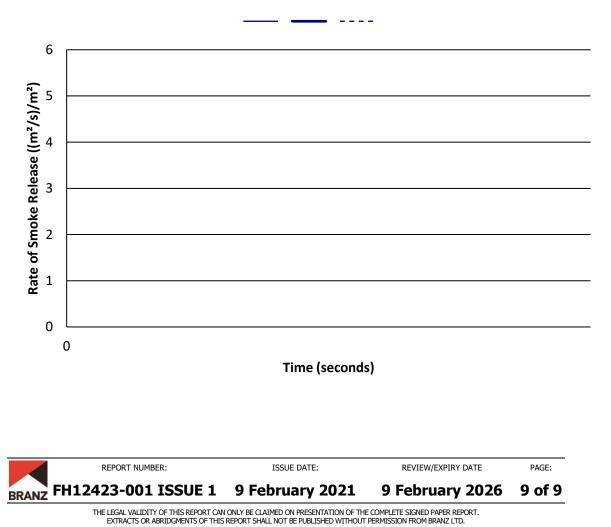
Specimen ID	ecimen ID Average HRR over 180 s from ignition		% difference from the arithmetic mean
FH12423-1-50-2	-0.6		15.5%
FH12423-1-50-3	0.6	-0.5	-211.6%
FH12423-2-50-1	-1.5		196.1%

Table 4 identifies all the specimens exposed to 50 kW/m² irradiance exceeded the acceptance criteria. Although all the specimens were outside of the variability criteria of the test standard, the same Group Number classification was determined for each specimen. A further set of three tests as required by the test standard was deemed not to be necessary and would not be expected to lead to an alteration of the classification.

5. SUMMARY


The report summary for the specimens as described in Section 1, exposed to an irradiance of 50 kW/m^2 is given in Table 5 below with rates of heat release illustrated in Figure 2.

Mean Specimen thickness (mm)	Irradiance (kW/m ²)	Mean Time to Ignition (s)	Mean Peak Heat Release Rate (kW/m²)	Mean Average Specific Extinction Area (m ² /kg)
4.2	50	No ignition	8.9	1.0


Table 5: Report summary

FH12423-001-C1 ISSUE 1 GROUP NUMBER CLASSIFICATION

This is to certify that the specimens described below were tested by BRANZ for determination of Group Number Classification and Average Specific Extinction Area in accordance with ISO 5660 Parts 1 and 2.

Test Sponsor

PSP Limited 320 Rosedale Road Albany, Auckland 0632 New Zealand

Date of tests

11th and 28th November 2019 and 20th February 2020

Reference BRANZ Test Report

FH12423-001 Issue 1 – 9 February 2021

Test specimens as described by the client

ALPOLIC™ NC

A white coloured nominally 4 mm thick composite panel comprised of 3 mm thick highly mineral filled core including aluminium tri-hydroxide and calcium carbonate, with a 0.5 mm coated aluminium alloy laminate on both sides.

Specimen ID	Mass (g)	Thickness (mm)	Apparent Density (kg/m³)	Layer	Indicative Result
FH12423-1-50-2	87.8	4.2	2090	Front Face	Group 1-S
FH12423-1-50-3	89.2	4.2	2124	Front Face	Group 1-S
FH12423-2-50-1	86.1	4.1	2100	Front Face	Group 1-S
FH12423-3-50-1	71.6	3.8	1884	Exposed Core	Group 1-S

Note: Shaded rows indicate sample tested in full within.

Group Number Classification in accordance with the New Zealand Building Code

Calculations were carried out according to NZBC Verification Method C/VM2 Appendix A. The classification for the sample as described above is given in the table below.

Building Code Document	Group Number Classification
NZBC Verification Method C/VM2 Appendix A	1-S

Issued by

J. R. Stallinger

J. R. Stallinger Associate Fire Testing Engineer BRANZ

Issue Date 9 February 2021

Reviewed by

L. F. Hersche Fire Testing Engineer IANZ Approved Signatory

Expiry Date 9 February 2026 Regulatory authorities are advised to examine test reports before approving any product.

All tests and procedures reported herein, unless indicated, have been performed in accordance with the laboratory's scope of accreditation

The National Association of Testing Authorities (NATA) and International Accreditation New Zealand (IANZ) are both signatories of the ILAC Mutual Recognition Agreement.